
Privacy Preserving Machine Learning
SecureML: An overview and discussion

Soham De
26 July 2021

WiCS Research Reading Group



Contents

Privacy Preserving Machine
Learning

An Overview
Existing Literature

Preliminaries
Machine Learning Primitives
Cryptography Primitives

SecureML
An Overview

1



Privacy Preserving Machine
Learning



Privacy Preserving Machine
Learning

An Overview



Traditional Machine Learning

Figure 1: Present-Day applications of Machine Learning
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But why preserve privacy in ML?
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The Need for Preserving Privacy

• Primary goal of real-world mission-critical ML systems is
accuracy

• Accuracy is contingent on :
• High compute power
• Availability of data from varied sources

• Accumulating data from different and various sources is not
practical

EU’s GDPR (Article 46)
”...a controller or processor may transfer personal data to a third country
or an international organisation only if the controller or processor has
provided appropriate safeguards...” (abridged)
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Privacy Preserving Machine
Learning

Existing Literature



Popular Approaches

Dominant approaches in literature are:

• Hardware Based
• Trusted Enclaves (SGX)

• Software Based
• Fully Homomorphic Encryption
• Secure Multiparty Computation
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This talk focuses on approaches using Secure
Multiparty Computation
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Regression

Regression
Given n training data samples xi each containing d features and the
corresponding output labels yi, regression is a statistical process to learn
a function g such that g(xi) = yi.

Figure 2: Simplified Illustration (N=22)
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Linear Regression

• In linear regression, the function g is assumed to be linear and
can be represented as the inner product of xi with the
coefficient vector w: g(xi) =

∑d
j=1 xijwj = xi · w

Figure 3: Simplified Linear Regression (N=22)
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Linear Regression

• To learn the coefficient vector w, a cost function C(w) is defined
and w is calculated by the optimization argminwC(w). In linear
regression, a commonly used cost function is C(w) = 1

nCi(w),
where Ci(w) = 1

2 (xi · w− yi)2

• The solution for this optimization problem can be computed by
solving the linear system (XT × X)× w = XT × Y
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Stochastic Gradient Descent

• In each iteration, a sample (xi, yi) is selected and a coefficient wj
is updated as:

wj := wj − α
δCi(w)
δwj

where α is a learning rate defining the magnitude to move
towards the minimum in each iteration.

• Substituting the cost function of linear regression, the formula
becomes wj := wj − α(xi · w− yi)xij
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Mini-Batches

• In practice, instead of selecting one sample of data per
iteration, a small batch of samples are selected randomly and w
is updated by averaging the partial derivatives of all samples -
this can now benefit from vectorization

• With Mini-batches, the update equation becomes:

wj := wj −
1
|B|αX

T
B × (XB × w− YB)
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Logistic Regression

• In classification problems with two classes, the output label y is
binary

• Therefore, an activation function f is applied on top of the inner
product and the relationship is expressed as: g(xi) = f(xi · w)

• In logistic regression, the activation function is the logistic
function, i.e:

f(u) = 1
1+ e−u
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Logistic Regression

Figure 4: Sigmoid (Logistic) Activation Function

• Since the only difference between Linear and Logistic
Regression is the activation function in forward propagation, the
update function can be simply modified as:

wj := wj −
1
|B|αX

T
B × (f(XB × w)− YB)
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Neural Networks

• Neural networks are a generalization of regression to learn
more complicated relationships between high dimensional
input and output data

• Each node in the hidden layer and the output layer is an
instance of regression and is associated with an activation
function and a coefficient vector

• ReLU (f(u) = max(0,u)) is a widely used activation function
• For classification problems with multiple classes, usually a
softmax function: f(ui) = e−ui∑dm

i=1 e
−ui

is applied at the last (output
layer)
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Preliminaries

Cryptography Primitives



Secure Function Evaluation

Problem Definition
Given n (≥ 2) parties with private inputs Xi, where i ∈ {0,n}, evaluate a
(publicly known) function F where, F(X0, X1, . . . Xn)

• A naive solution involves Secure Outsourced Computing (SOC)
and a trusted third-party, as will be described soon

• In the absence of such a third-party, Secure Multiparty
Computation (S-MPC) may provide a solution
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Secure Function Evaluation
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Crypto Protocols

• Linear Layers: Multiplications, Convolutions ...
• Secure multiplication
• Truncation

• Activation Functions: ReLU, Maxpool ...
• Comparison (Garbled Circuits)

• Transcendental Functions: Sigmoid, tanh ...
• More complex (refer to SIRNN, IEEE S&P’21)
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SecureML

An Overview



Novel Contributions

• New protocols for linear regression, logistic regression and
neural network training

• Truncation for handling arithmetic on shared decimals
• A new MPC-friendly activation function
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Linear Regression with Secure ML

Recall, the Linear Regression equation:

wj := wj −
1
|B|αX

T
B × (XB × w− YB)

Things we need to solve are:

• An addition (subtraction) protocol on additive shares
• A multiplication protocol on additive shares
• Handling Floating Point Inputs
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Addition on Secret Shares
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Multiplication on Secret Shares
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Multiplication on Secret Shares
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But what about floating point inputs?
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Dealing with floating points

• Mapping Decimals to Integers: A decimal floating-point number
x is mapped into an integer as x′ = 2lDx where x has at most lD
bits in the fractional part. In our implementation, we set lD = 13
for double floating-point precision.

• Handling Negative Decimals: We also note that if a decimal
number z is negative, it will be represented in the field as
2l − |z|, where |z| is its absolute value and the truncation
operation (described later) changes to z = 2l − ⌊|z|⌋
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Dealing with floating points

• Truncation Operation: Consider the fixed-point multiplication of two
decimal numbers x and y with at most lD bits in the fractional part. We
first transform the numbers to integers by letting x′ = 2lDx and y′ = 2lDy
and then multiply them to obtain the product
z = x′ · y′ = 2lDx · 2lDy = 22lDx · y. Note that z has at most 2lD bits
representing the fractional part of the product, so we simply truncate
the last lD bits of z such that it has at most lD bits representing the
fractional part. Mathematically speaking, if z is decomposed into two
parts z = z1 · 2lD + z2, where 0 ≤ z2 < 2lD , then the truncation results is
z1. We denote this truncation operations by ⌊z⌋
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Truncation
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Truncation
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Privacy Preserving Linear Regression

Inputs: ⟨X⟩, ⟨Y⟩, ⟨U⟩, ⟨V⟩, ⟨Z⟩, ⟨V′⟩, ⟨Z′⟩

Si ← ⟨E⟩i = ⟨X⟩i − ⟨U⟩i

Obtain E = RecA(⟨E⟩0, ⟨E⟩1)

Si ← ⟨Fj⟩i = ⟨w⟩i − ⟨Vj⟩i

Obtain F = RecA(⟨F⟩0, ⟨F⟩1)

Si ← ⟨Y
∗
Bj
⟩i = i · EBj

· Fj + ⟨XBj
⟩i · Fj + EBj

· ⟨w⟩i + ⟨Zj⟩i

Si ← ⟨DBj
⟩i = ⟨Y

∗
Bj
⟩i − ⟨YBj

⟩i

Si ← ⟨F
′
j ⟩i = ⟨DBj

⟩i − ⟨V
′
j ⟩i

Obtain F′ = RecA(⟨F′⟩0, ⟨F
′⟩1)

Si ← ⟨∆⟩i = i · ETBj
· F′j + ⟨XTBj

⟩i · F
′
j + ETBj

· ⟨DBj
⟩i + ⟨Z

′
j ⟩i

Si ← ⟨w⟩i := ← ⟨w⟩i =
α

|B|
⌊⟨∆⟩i⌋

Output: w = RecA(⟨w⟩0, ⟨w⟩1)
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New Activation Function

f(x) =


0 if x < − 1

2

x+ 1
2 if− 1

2 ≤ x ≤ 1
2

1 if x > 1
2
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fin.

cb
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