
Privacy Preserving Machine Learning
SecureML: An overview and discussion

Soham De
26 July 2021

WiCS Research Reading Group

Contents

Privacy Preserving Machine
Learning

An Overview
Existing Literature

Preliminaries
Machine Learning Primitives
Cryptography Primitives

SecureML
An Overview

1

Privacy Preserving Machine
Learning

Privacy Preserving Machine
Learning

An Overview

Traditional Machine Learning

Figure 1: Present-Day applications of Machine Learning

2

But why preserve privacy in ML?

2

The Need for Preserving Privacy

• Primary goal of real-world mission-critical ML systems is
accuracy

• Accuracy is contingent on :
• High compute power
• Availability of data from varied sources

• Accumulating data from different and various sources is not
practical

EU’s GDPR (Article 46)
”...a controller or processor may transfer personal data to a third country
or an international organisation only if the controller or processor has
provided appropriate safeguards...” (abridged)

3

https://gdpr.eu/article-46-appropriate-safeguards-personal-data-transfers/

The Need for Preserving Privacy

• Primary goal of real-world mission-critical ML systems is
accuracy

• Accuracy is contingent on :
• High compute power
• Availability of data from varied sources

• Accumulating data from different and various sources is not
practical

EU’s GDPR (Article 46)
”...a controller or processor may transfer personal data to a third country
or an international organisation only if the controller or processor has
provided appropriate safeguards...” (abridged)

3

https://gdpr.eu/article-46-appropriate-safeguards-personal-data-transfers/

The Need for Preserving Privacy

• Primary goal of real-world mission-critical ML systems is
accuracy

• Accuracy is contingent on :
• High compute power
• Availability of data from varied sources

• Accumulating data from different and various sources is not
practical

EU’s GDPR (Article 46)
”...a controller or processor may transfer personal data to a third country
or an international organisation only if the controller or processor has
provided appropriate safeguards...” (abridged)

3

https://gdpr.eu/article-46-appropriate-safeguards-personal-data-transfers/

The Need for Preserving Privacy

• Primary goal of real-world mission-critical ML systems is
accuracy

• Accuracy is contingent on :
• High compute power
• Availability of data from varied sources

• Accumulating data from different and various sources is not
practical

EU’s GDPR (Article 46)
”...a controller or processor may transfer personal data to a third country
or an international organisation only if the controller or processor has
provided appropriate safeguards...” (abridged)

3

https://gdpr.eu/article-46-appropriate-safeguards-personal-data-transfers/

Privacy Preserving Machine
Learning

Existing Literature

Popular Approaches

Dominant approaches in literature are:

• Hardware Based
• Trusted Enclaves (SGX)

• Software Based
• Fully Homomorphic Encryption
• Secure Multiparty Computation

4

Popular Approaches

Dominant approaches in literature are:

• Hardware Based
• Trusted Enclaves (SGX)

• Software Based
• Fully Homomorphic Encryption
• Secure Multiparty Computation

4

This talk focuses on approaches using Secure
Multiparty Computation

4

Preliminaries

Preliminaries

Machine Learning Primitives

Regression

Regression
Given n training data samples xi each containing d features and the
corresponding output labels yi, regression is a statistical process to learn
a function g such that g(xi) = yi.

Figure 2: Simplified Illustration (N=22)

5

Linear Regression

• In linear regression, the function g is assumed to be linear and
can be represented as the inner product of xi with the
coefficient vector w: g(xi) =

∑d
j=1 xijwj = xi · w

Figure 3: Simplified Linear Regression (N=22)

6

Linear Regression

• To learn the coefficient vector w, a cost function C(w) is defined
and w is calculated by the optimization argminwC(w). In linear
regression, a commonly used cost function is C(w) = 1

nCi(w),
where Ci(w) = 1

2 (xi · w− yi)2

• The solution for this optimization problem can be computed by
solving the linear system (XT × X)× w = XT × Y

7

Linear Regression

• To learn the coefficient vector w, a cost function C(w) is defined
and w is calculated by the optimization argminwC(w). In linear
regression, a commonly used cost function is C(w) = 1

nCi(w),
where Ci(w) = 1

2 (xi · w− yi)2

• The solution for this optimization problem can be computed by
solving the linear system (XT × X)× w = XT × Y

7

Stochastic Gradient Descent

• In each iteration, a sample (xi, yi) is selected and a coefficient wj
is updated as:

wj := wj − α
δCi(w)
δwj

where α is a learning rate defining the magnitude to move
towards the minimum in each iteration.

• Substituting the cost function of linear regression, the formula
becomes wj := wj − α(xi · w− yi)xij

8

Stochastic Gradient Descent

• In each iteration, a sample (xi, yi) is selected and a coefficient wj
is updated as:

wj := wj − α
δCi(w)
δwj

where α is a learning rate defining the magnitude to move
towards the minimum in each iteration.

• Substituting the cost function of linear regression, the formula
becomes wj := wj − α(xi · w− yi)xij

8

Mini-Batches

• In practice, instead of selecting one sample of data per
iteration, a small batch of samples are selected randomly and w
is updated by averaging the partial derivatives of all samples -
this can now benefit from vectorization

• With Mini-batches, the update equation becomes:

wj := wj −
1
|B|αX

T
B × (XB × w− YB)

9

Mini-Batches

• In practice, instead of selecting one sample of data per
iteration, a small batch of samples are selected randomly and w
is updated by averaging the partial derivatives of all samples -
this can now benefit from vectorization

• With Mini-batches, the update equation becomes:

wj := wj −
1
|B|αX

T
B × (XB × w− YB)

9

Logistic Regression

• In classification problems with two classes, the output label y is
binary

• Therefore, an activation function f is applied on top of the inner
product and the relationship is expressed as: g(xi) = f(xi · w)

• In logistic regression, the activation function is the logistic
function, i.e:

f(u) = 1
1+ e−u

10

Logistic Regression

• In classification problems with two classes, the output label y is
binary

• Therefore, an activation function f is applied on top of the inner
product and the relationship is expressed as: g(xi) = f(xi · w)

• In logistic regression, the activation function is the logistic
function, i.e:

f(u) = 1
1+ e−u

10

Logistic Regression

• In classification problems with two classes, the output label y is
binary

• Therefore, an activation function f is applied on top of the inner
product and the relationship is expressed as: g(xi) = f(xi · w)

• In logistic regression, the activation function is the logistic
function, i.e:

f(u) = 1
1+ e−u

10

Logistic Regression

Figure 4: Sigmoid (Logistic) Activation Function

• Since the only difference between Linear and Logistic
Regression is the activation function in forward propagation, the
update function can be simply modified as:

wj := wj −
1
|B|αX

T
B × (f(XB × w)− YB)

11

Neural Networks

• Neural networks are a generalization of regression to learn
more complicated relationships between high dimensional
input and output data

• Each node in the hidden layer and the output layer is an
instance of regression and is associated with an activation
function and a coefficient vector

• ReLU (f(u) = max(0,u)) is a widely used activation function
• For classification problems with multiple classes, usually a
softmax function: f(ui) = e−ui∑dm

i=1 e
−ui

is applied at the last (output
layer)

12

Neural Networks

• Neural networks are a generalization of regression to learn
more complicated relationships between high dimensional
input and output data

• Each node in the hidden layer and the output layer is an
instance of regression and is associated with an activation
function and a coefficient vector

• ReLU (f(u) = max(0,u)) is a widely used activation function
• For classification problems with multiple classes, usually a
softmax function: f(ui) = e−ui∑dm

i=1 e
−ui

is applied at the last (output
layer)

12

Neural Networks

• Neural networks are a generalization of regression to learn
more complicated relationships between high dimensional
input and output data

• Each node in the hidden layer and the output layer is an
instance of regression and is associated with an activation
function and a coefficient vector

• ReLU (f(u) = max(0,u)) is a widely used activation function

• For classification problems with multiple classes, usually a
softmax function: f(ui) = e−ui∑dm

i=1 e
−ui

is applied at the last (output
layer)

12

Neural Networks

• Neural networks are a generalization of regression to learn
more complicated relationships between high dimensional
input and output data

• Each node in the hidden layer and the output layer is an
instance of regression and is associated with an activation
function and a coefficient vector

• ReLU (f(u) = max(0,u)) is a widely used activation function
• For classification problems with multiple classes, usually a
softmax function: f(ui) = e−ui∑dm

i=1 e
−ui

is applied at the last (output
layer)

12

Preliminaries

Cryptography Primitives

Secure Function Evaluation

Problem Definition
Given n (≥ 2) parties with private inputs Xi, where i ∈ {0,n}, evaluate a
(publicly known) function F where, F(X0, X1, . . . Xn)

• A naive solution involves Secure Outsourced Computing (SOC)
and a trusted third-party, as will be described soon

• In the absence of such a third-party, Secure Multiparty
Computation (S-MPC) may provide a solution

13

Secure Function Evaluation

Problem Definition
Given n (≥ 2) parties with private inputs Xi, where i ∈ {0,n}, evaluate a
(publicly known) function F where, F(X0, X1, . . . Xn)

• A naive solution involves Secure Outsourced Computing (SOC)
and a trusted third-party, as will be described soon

• In the absence of such a third-party, Secure Multiparty
Computation (S-MPC) may provide a solution

13

Secure Function Evaluation

14

Secure Function Evaluation

15

Secure Function Evaluation

16

Secure Function Evaluation

17

Secure Function Evaluation

18

Secure Function Evaluation

19

Secure Function Evaluation

20

Crypto Protocols

• Linear Layers: Multiplications, Convolutions ...
• Secure multiplication
• Truncation

• Activation Functions: ReLU, Maxpool ...
• Comparison (Garbled Circuits)

• Transcendental Functions: Sigmoid, tanh ...
• More complex (refer to SIRNN, IEEE S&P’21)

21

Crypto Protocols

• Linear Layers: Multiplications, Convolutions ...
• Secure multiplication
• Truncation

• Activation Functions: ReLU, Maxpool ...
• Comparison (Garbled Circuits)

• Transcendental Functions: Sigmoid, tanh ...
• More complex (refer to SIRNN, IEEE S&P’21)

21

Crypto Protocols

• Linear Layers: Multiplications, Convolutions ...
• Secure multiplication
• Truncation

• Activation Functions: ReLU, Maxpool ...
• Comparison (Garbled Circuits)

• Transcendental Functions: Sigmoid, tanh ...
• More complex (refer to SIRNN, IEEE S&P’21)

21

SecureML

SecureML

An Overview

Novel Contributions

• New protocols for linear regression, logistic regression and
neural network training

• Truncation for handling arithmetic on shared decimals
• A new MPC-friendly activation function

22

Novel Contributions

• New protocols for linear regression, logistic regression and
neural network training

• Truncation for handling arithmetic on shared decimals

• A new MPC-friendly activation function

22

Novel Contributions

• New protocols for linear regression, logistic regression and
neural network training

• Truncation for handling arithmetic on shared decimals
• A new MPC-friendly activation function

22

Linear Regression with Secure ML

Recall, the Linear Regression equation:

wj := wj −
1
|B|αX

T
B × (XB × w− YB)

Things we need to solve are:

• An addition (subtraction) protocol on additive shares
• A multiplication protocol on additive shares
• Handling Floating Point Inputs

23

Linear Regression with Secure ML

Recall, the Linear Regression equation:

wj := wj −
1
|B|αX

T
B × (XB × w− YB)

Things we need to solve are:

• An addition (subtraction) protocol on additive shares

• A multiplication protocol on additive shares
• Handling Floating Point Inputs

23

Linear Regression with Secure ML

Recall, the Linear Regression equation:

wj := wj −
1
|B|αX

T
B × (XB × w− YB)

Things we need to solve are:

• An addition (subtraction) protocol on additive shares
• A multiplication protocol on additive shares

• Handling Floating Point Inputs

23

Linear Regression with Secure ML

Recall, the Linear Regression equation:

wj := wj −
1
|B|αX

T
B × (XB × w− YB)

Things we need to solve are:

• An addition (subtraction) protocol on additive shares
• A multiplication protocol on additive shares
• Handling Floating Point Inputs

23

Addition on Secret Shares

24

Multiplication on Secret Shares

25

Multiplication on Secret Shares

26

But what about floating point inputs?

26

Dealing with floating points

• Mapping Decimals to Integers: A decimal floating-point number
x is mapped into an integer as x′ = 2lDx where x has at most lD
bits in the fractional part. In our implementation, we set lD = 13
for double floating-point precision.

• Handling Negative Decimals: We also note that if a decimal
number z is negative, it will be represented in the field as
2l − |z|, where |z| is its absolute value and the truncation
operation (described later) changes to z = 2l − ⌊|z|⌋

27

Dealing with floating points

• Mapping Decimals to Integers: A decimal floating-point number
x is mapped into an integer as x′ = 2lDx where x has at most lD
bits in the fractional part. In our implementation, we set lD = 13
for double floating-point precision.

• Handling Negative Decimals: We also note that if a decimal
number z is negative, it will be represented in the field as
2l − |z|, where |z| is its absolute value and the truncation
operation (described later) changes to z = 2l − ⌊|z|⌋

27

Dealing with floating points

• Truncation Operation: Consider the fixed-point multiplication of two
decimal numbers x and y with at most lD bits in the fractional part. We
first transform the numbers to integers by letting x′ = 2lDx and y′ = 2lDy
and then multiply them to obtain the product
z = x′ · y′ = 2lDx · 2lDy = 22lDx · y. Note that z has at most 2lD bits
representing the fractional part of the product, so we simply truncate
the last lD bits of z such that it has at most lD bits representing the
fractional part. Mathematically speaking, if z is decomposed into two
parts z = z1 · 2lD + z2, where 0 ≤ z2 < 2lD , then the truncation results is
z1. We denote this truncation operations by ⌊z⌋

28

Truncation

29

Truncation

30

Privacy Preserving Linear Regression

Inputs: ⟨X⟩, ⟨Y⟩, ⟨U⟩, ⟨V⟩, ⟨Z⟩, ⟨V′⟩, ⟨Z′⟩

Si ← ⟨E⟩i = ⟨X⟩i − ⟨U⟩i

Obtain E = RecA(⟨E⟩0, ⟨E⟩1)

Si ← ⟨Fj⟩i = ⟨w⟩i − ⟨Vj⟩i

Obtain F = RecA(⟨F⟩0, ⟨F⟩1)

Si ← ⟨Y
∗
Bj
⟩i = i · EBj

· Fj + ⟨XBj
⟩i · Fj + EBj

· ⟨w⟩i + ⟨Zj⟩i

Si ← ⟨DBj
⟩i = ⟨Y

∗
Bj
⟩i − ⟨YBj

⟩i

Si ← ⟨F
′
j ⟩i = ⟨DBj

⟩i − ⟨V
′
j ⟩i

Obtain F′ = RecA(⟨F′⟩0, ⟨F
′⟩1)

Si ← ⟨∆⟩i = i · ETBj
· F′j + ⟨XTBj

⟩i · F
′
j + ETBj

· ⟨DBj
⟩i + ⟨Z

′
j ⟩i

Si ← ⟨w⟩i := ← ⟨w⟩i =
α

|B|
⌊⟨∆⟩i⌋

Output: w = RecA(⟨w⟩0, ⟨w⟩1)

31

New Activation Function

f(x) =

0 if x < − 1

2

x+ 1
2 if− 1

2 ≤ x ≤ 1
2

1 if x > 1
2

32

fin.

cb

32

	Privacy Preserving Machine Learning
	An Overview
	Existing Literature

	Preliminaries
	Machine Learning Primitives
	Cryptography Primitives

	SecureML
	An Overview

